Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113
1.
Front Nutr ; 11: 1381779, 2024.
Article En | MEDLINE | ID: mdl-38595789

Background: To identify key and shared insulin resistance (IR) molecular signatures across all insulin-sensitive tissues (ISTs), and their potential targeted drugs. Methods: Three datasets from Gene Expression Omnibus (GEO) were acquired, in which the ISTs (fat, muscle, and liver) were from the same individual with obese mice. Integrated bioinformatics analysis was performed to obtain the differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) was carried out to determine the "most significant trait-related genes" (MSTRGs). Enrichment analysis and PPI network were performed to find common features and novel hub genes in ISTs. The shared genes of DEGs and genes between DEGs and MSTRGs across four ISTs were identified as key IR therapeutic target. The Attie Lab diabetes database and obese rats were used to verify candidate genes. A medical drug-gene interaction network was conducted by using the Comparative Toxicogenomics Database (CTD) to find potential targeted drugs. The candidate drug was validated in Hepa1-6 cells. Results: Lipid metabolic process, mitochondrion, and oxidoreductase activity as common features were enriched from ISTs under an obese context. Thirteen shared genes (Ubd, Lbp, Hp, Arntl, Cfd, Npas2, Thrsp., Tpx2, Pkp1, Sftpd, Mthfd2, Tnfaip2, and Vnn3) of DEGs across ISTs were obtained and confirmed. Among them, Ubd was the only shared gene between DEGs and MSTRGs across four ISTs. The expression of Ubd was significantly upregulated across four ISTs in obese rats, especially in the liver. The IR Hepa1-6 cell models treated with dexamethasone (Dex), palmitic acid (PA), and 2-deoxy-D-ribose (dRib) had elevated expression of Ubd. Knockdown of Ubd increased the level of p-Akt. A lowing Ubd expression drug, promethazine (PMZ) from CTD analysis rescued the decreased p-Akt level in IR Hepa1-6 cells. Conclusion: This study revealed Ubd, a novel and shared IR molecular signature across four ISTs, as an effective biomarker and provided new insight into the mechanisms of IR. PMZ was a candidate drug for IR which increased p-Akt level and thus improved IR by targeting Ubd and downregulation of Ubd expression. Both Ubd and PMZ merit further clinical translational investigation to improve IR.

2.
J Neuroinflammation ; 21(1): 75, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532410

BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.


Macular Degeneration , Sulfonamides , beta Catenin , Humans , Male , Animals , Mice , beta Catenin/metabolism , Wnt-5a Protein , Mice, Inbred C57BL , Retinal Pigment Epithelium/metabolism , Epithelial-Mesenchymal Transition , Macular Degeneration/metabolism , Fibrosis , RNA, Small Interfering/metabolism
3.
Glia ; 72(3): 504-528, 2024 Mar.
Article En | MEDLINE | ID: mdl-37904673

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/pathology , Ependymoglial Cells/metabolism , Streptozocin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta3/adverse effects , Transforming Growth Factor beta3/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Gliosis/pathology , Retina/metabolism , Diabetic Retinopathy/pathology , RNA, Messenger/metabolism
4.
Stem Cell Res Ther ; 14(1): 281, 2023 10 02.
Article En | MEDLINE | ID: mdl-37784129

BACKGROUND: T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS: A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS: Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS: Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.


Conjunctivitis, Allergic , Mesenchymal Stem Cells , Humans , Animals , Mice , Conjunctivitis, Allergic/drug therapy , Conjunctivitis, Allergic/pathology , Conjunctiva/metabolism , Conjunctiva/pathology , Cytokines/metabolism , Disease Models, Animal , Mesenchymal Stem Cells/metabolism , Umbilical Cord
5.
Neurobiol Dis ; 185: 106250, 2023 09.
Article En | MEDLINE | ID: mdl-37536385

Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-ß (TGF-ß)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.


Retinal Pigment Epithelium , Wet Macular Degeneration , Humans , Aged , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism , Wet Macular Degeneration/pathology , Fibrosis
6.
Dement Geriatr Cogn Disord ; 52(2): 47-73, 2023.
Article En | MEDLINE | ID: mdl-37068473

INTRODUCTION: Stem cell-based regenerative medicine has provided an excellent opportunity to investigate therapeutic strategies and innovative treatments for Alzheimer's disease (AD). However, there is an absence of visual overviews to assess the published literature systematically. METHODS: In this review, the bibliometric approach was used to estimate the searched data on stem cell research in AD from 2004 to 2022, and we also utilized CiteSpace and VOSviewer software to evaluate the contributions and co-occurrence relationships of different countries/regions, institutes, journals, and authors as well as to discover research hot spots and encouraging future trends in this field. RESULTS: From 2004 to 2022, a total of 3,428 publications were retrieved. The number of publications and citations on stem cell research in AD has increased dramatically in the last nearly 20 years, especially since 2016. North America and Asia were the top 2 highest output regions. The leading country in terms of publications and access to collaborative networks was the USA. Centrality analysis revealed that the UCL (0.05) was at the core of the network. The Journal of Alzheimer's Disease (n = 102, 2.98%) was the most productive academic journal. The analyses of keyword burst detection indicated that exosomes, risk factors, and drug delivery only had burst recently. Citations and co-citation achievements clarified that cluster #0 induced pluripotent stem cells, #2 mesenchymal stem cells, #3 microglia, and #6 adult hippocampal neurogenesis persisted to recent time. CONCLUSION: This bibliometric analysis provides a comprehensive guide for clinicians and scholars working in this field. These analysis and results hope to provide useful information and references for future understanding of the challenges behind translating underlying stem cell biology into novel clinical therapeutic potential in AD.


Alzheimer Disease , Stem Cell Research , Humans , Alzheimer Disease/therapy , Bibliometrics , Hippocampus , Microglia
7.
Pharmacol Res ; 187: 106559, 2023 01.
Article En | MEDLINE | ID: mdl-36403720

Retinal Müller glial dysfunction and intracellular edema are important mechanisms leading to diabetic macular edema (DME). Aquaporin 11 (AQP11) is primarily expressed in Müller glia with unclear functions. This study aims to explore the role of AQP11 in the pathogenesis of intracellular edema of Müller glia in diabetic retinopathy (DR). Here, we found that AQP11 expression, primarily located at the endfeet of Müller glia, was down-regulated with diabetes progression, accompanied by intracellular edema, which was alleviated by intravitreal injection of lentivirus-mediated AQP11 overexpression. Similarly, intracellular edema of hypoxia-treated rat Müller cell line (rMC-1) was aggravated by AQP11 inhibition, while attenuated by AQP11 overexpression, accompanied by enhanced function in glutamate metabolism and reduced cell death. The down-regulation of AQP11 was also verified in the Müller glia from the epiretinal membranes (ERMs) of proliferative DR (PDR) patients. Mechanistically, down-regulation of AQP11 in DR was mediated by the HIF-1α-dependent and independent miRNA-AQP11 axis. Overall, we deciphered the AQP11 down-regulation, mediated by miRNA-AQP11 axis, resulted in Müller drainage dysfunction and subsequent intracellular edema in DR, which was partially reversed by AQP11 overexpression. Our findings propose a novel mechanism for the pathogenesis of DME, thus targeting AQP11 regulation provides a new therapeutic strategy for DME.


Aquaporins , Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , MicroRNAs , Rats , Animals , Diabetic Retinopathy/pathology , MicroRNAs/genetics , Down-Regulation , Aquaporins/metabolism
8.
Neural Regen Res ; 18(7): 1441-1449, 2023 Jul.
Article En | MEDLINE | ID: mdl-36571340

Epigenetics focuses on DNA methylation, histone modification, chromatin remodeling, noncoding RNAs, and other gene regulation mechanisms beyond the DNA sequence. In the past decade, epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels. The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated. The diabetic condition facilitates epigenetic changes and influences target gene expression. In this review, we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy.

9.
Neural Regen Res ; 18(5): 976-982, 2023 May.
Article En | MEDLINE | ID: mdl-36254977

Diabetic retinopathy, characterized as a microangiopathy and neurodegenerative disease, is the leading cause of visual impairment in diabetic patients. Many clinical features observed in diabetic retinopathy, such as capillary occlusion, acellular capillaries and retinal non-perfusion, aggregate retinal ischemia and represent relatively late events in diabetic retinopathy. In fact, retinal microvascular injury is an early event in diabetic retinopathy involving multiple biochemical alterations, and is manifested by changes to the retinal neurovascular unit and its cellular components. Currently, intravitreal anti-vascular endothelial growth factor therapy is the first-line treatment for diabetic macular edema, and benefits the patient by decreasing the edema and improving visual acuity. However, a significant proportion of patients respond poorly to anti-vascular endothelial growth factor treatments, indicating that factors other than vascular endothelial growth factor are involved in the pathogenesis of diabetic macular edema. Accumulating evidence confirms that low-grade inflammation plays a critical role in the pathogenesis and development of diabetic retinopathy as multiple inflammatory factors, such as interleukin-1ß, monocyte chemotactic protein-1 and tumor necrosis factor -α, are increased in the vitreous and retina of diabetic retinopathy patients. These inflammatory factors, together with growth factors such as vascular endothelial growth factor, contribute to blood-retinal barrier breakdown, vascular damage and neuroinflammation, as well as pathological angiogenesis in diabetic retinopathy, complicated by diabetic macular edema and proliferative diabetic retinopathy. In addition, retinal cell types including microglia, Müller glia, astrocytes, retinal pigment epithelial cells, and others are activated, to secrete inflammatory mediators, aggravating cell apoptosis and subsequent vascular leakage. New therapies, targeting these inflammatory molecules or related signaling pathways, have the potential to inhibit retinal inflammation and prevent diabetic retinopathy progression. Here, we review the relevant literature to date, summarize the inflammatory mechanisms underlying the pathogenesis of diabetic retinopathy, and propose inflammation-based treatments for diabetic retinopathy and diabetic macular edema.

10.
iScience ; 25(10): 105050, 2022 Oct 21.
Article En | MEDLINE | ID: mdl-36185374

The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)-CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-ß-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment.

11.
Cell Death Dis ; 13(9): 785, 2022 09 12.
Article En | MEDLINE | ID: mdl-36096985

Age-related macular degeneration (AMD) is a major vision-threatening disease. Although mesenchymal stem cells (MSCs) exhibit beneficial neural protective effects, their limited differentiation capacity in vivo attenuates their therapeutic function. Therefore, the differentiation of MSCs into retinal pigment epithelial (RPE) cells in vitro and their subsequent transplantation into the subretinal space is expected to improve the outcome of cell therapy. Here, we transdifferentiated human umbilical cord MSCs (hUCMSCs) into induced RPE (iRPE) cells using a cocktail of five transcription factors (TFs): CRX, NR2E1, C-MYC, LHX2, and SIX6. iRPE cells exhibited RPE specific properties, including phagocytic ability, epithelial polarity, and gene expression profile. In addition, high expression of PTPN13 in iRPE cells endows them with an epithelial-to-mesenchymal transition (EMT)-resistant capacity through dephosphorylating syntenin1, and subsequently promoting the internalization and degradation of transforming growth factor-ß receptors. After grafting into the subretinal space of the sodium iodate-induced rat AMD model, iRPE cells demonstrated a better therapeutic function than hUCMSCs. These results suggest that hUCMSC-derived iRPE cells may be promising candidates to reverse AMD pathophysiology.


Macular Degeneration , Mesenchymal Stem Cells , Retinal Degeneration , Animals , Epithelial Cells/metabolism , Humans , LIM-Homeodomain Proteins/metabolism , Macular Degeneration/metabolism , Macular Degeneration/therapy , Mesenchymal Stem Cells/metabolism , Rats , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Transcription Factors/metabolism , Umbilical Cord/metabolism
12.
J Tissue Eng ; 13: 20417314221122123, 2022.
Article En | MEDLINE | ID: mdl-36093432

To study the biological functions and applications of human amniotic epithelial cell-derived extracellular vesicles (hAEC-EVs), the cargos of hAEC-EVs were analyzed using miRNA sequencing and proteomics analysis. The hAECs and hAEC-EVs in this study had specific characteristics. Multi-omics analyses showed that extracellular matrix (ECM) reorganization, inhibition of excessive myofibroblasts, and promotion of target cell adhesion to the ECM were their primary functions. We evaluated the application of hAEC-EVs for corneal alkali burn healing in rabbits and elucidated the fundamental mechanisms. Slit-lamp images revealed that corneal alkali burns induced central epithelial loss, stromal haze, iris, and pupil obscurity in rabbits. Slit-lamp examination and histological findings indicated that hAEC-EVs facilitated re-epithelialization of the cornea after alkali burns, reduced scar formation and promoted the restoration of corneal tissue transparency. Significantly fewer α-SMA-positive myofibroblasts were observed in the hAEC-EV-treated group than the PBS group. HAEC-EVs effectively promoted the proliferation and migration of hCECs and hCSCs in vitro and activated the focal adhesion signaling pathway. We demonstrated that hAEC-EVs were excellent cell-free candidates for the treatment of ECM lesion-based diseases, including corneal alkali burns. HAEC-EVs promoted ECM reorganization and cell adhesion of target tissues or cells via orderly activation of the focal adhesion signaling pathway.

13.
Int J Ophthalmol ; 15(8): 1296-1304, 2022.
Article En | MEDLINE | ID: mdl-36017031

AIM: To investigate the anti-inflammatory effect of intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) in patients with macular edema secondary to retinal vein occlusion (RVO-ME). METHODS: Twenty-eight eyes from twenty-eight treatment-naïve patients (14 males and 14 females) with RVO-ME were included in this retrospective study. The retinal vein occlusion (RVO) was comprised of both central retinal vein occlusion (CRVO, n=14) and branch retinal vein occlusion (BRVO, n=14). Intravitreal injection of anti-VEGF reagents were administered monthly for three consecutive months, in which 18 patients were injected with ranibizumab and 10 patients were injected with conbercept. All eyes were imaged with optical coherence tomography angiography (OCTA) at baseline and 1wk after monthly intravitreal anti-VEGF injection. The visual acuity (VA), central macular thickness (CMT), the number of hyperreflective foci (HRF) recognized as an inflammatory sign in OCT images, and non-perfusion area (NPA), were compared before and after anti-VEGF treatments. RESULTS: The mean interval between baseline and follow-up was 29.4±0.79 (range, 27-48)d. Compared with the baseline, the VA improved (logMAR 1.5±0.1 vs 0.8±0.1, P<0.05) and CMT decreased (460±34.0 µm vs 268.8±12.0 µm, P<0.05), significantly, after anti-VEGF treatment. The number of HRF was decreased significantly (76.5±4.8 vs 47.8±4.3, P<0.05) after anti-VEGF treatment. CONCLUSION: Anti-VEGF therapy is effective in treating RVO-ME. The mechanisms for the decreased HRF and the reduction of NPA by anti-VEGF therapy merits further exploration.

14.
Exp Eye Res ; 223: 109207, 2022 10.
Article En | MEDLINE | ID: mdl-35926646

Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-ß-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.


Epithelial-Mesenchymal Transition , Macular Degeneration , Cellular Senescence , Culture Media, Conditioned/pharmacology , Dasatinib/pharmacology , Epithelial Cells/metabolism , Humans , Hydrogen Peroxide/metabolism , Macular Degeneration/metabolism , Quercetin/pharmacology , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Transforming Growth Factor beta/metabolism
15.
Ophthalmic Res ; 2022 Jun 13.
Article En | MEDLINE | ID: mdl-35697006

INTRODUCTION: To describe the hyperreflective foci (HRF) on optical coherence tomography angiography (OCTA) in diabetic macular edema (DME) with subretinal fluid (SRF) and explore the association of HRF in the outer retina with photoreceptor integrity and visual outcomes after anti-vascular endothelial growth factor (anti-VEGF) treatment. METHODS: We retrospectively reviewed 46 eyes (36 patients) with DME treated with anti-VEGF drugs. The following parameters, including best-corrected visual acuity (BCVA), central macular thickness (CMT), the height of subretinal fluid (SRF), the number of HRF in the superficial capillary plexus (SCP), deep capillary plexus (DCP), and the outer retina, as well as the integrity of external limiting membrane (ELM) and ellipsoid zone (EZ), were evaluated and compared between the baseline and after 2 monthly injections of anti-VEGF drugs. The relationship between the HRF in the outer retina and the integrity of ELM and EZ, as well as BCVA was analyzed. RESULTS: BCVA was significantly improved in DME after anti-VEGF treatment, however, for the subgroup of DME patients with SRF, visual acuity remained unchanged after anti-VEGF treatment (p < 0.05 vs. p = 0.375). The number of HRF (p < 0.05), CMT (p < 0.001), and SRF height (p < 0.001) were significantly reduced, accompanied with partial restoration of ELM and EZ integrity after anti-VEGF injection. The HRF in the outer retina was correlated with the final ELM (p = 0.036) and EZ (p = 0.004) status. The final BCVA was significantly better in eyes with intact ELM (p = 0.002) and EZ at final visit (p< 0.001). CONCLUSION: The number of HRF in outer retina was negatively associated with the microstructural restoration of ELM and EZ, as well as the visual outcome in DME patients with SRF after anti-VEGF treatment.

16.
Stem Cell Res Ther ; 13(1): 136, 2022 04 01.
Article En | MEDLINE | ID: mdl-35365237

PURPOSE: To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS: Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS: The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION: IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.


Chaperone-Mediated Autophagy , Neural Stem Cells , Animals , Homeostasis , Lysosomes/metabolism , Mice , Retina
17.
Front Immunol ; 13: 831660, 2022.
Article En | MEDLINE | ID: mdl-35371022

Microglial activation and melatonin protection have been reported in diabetic retinopathy (DR). Whether melatonin could regulate microglia to protect the inner blood-retinal barrier (iBRB) remains unknown. In this study, the role of microglia in iBRB breakdown and the mechanisms of melatonin's regulation on microglia were explored. In diabetic rat retinas, activated microglia proliferated and migrated from the inner retina to the outer retina, accompanied by the obvious morphological changes. Meanwhile, significant leakage of albumin was evidenced at the site of close interaction between activated microglia and the damaged pericytes and endothelial cells. In vitro, inflammation-related cytokines, such as tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, and arginase-1 (Arg-1), were increased significantly in CoCl2-treated BV2 cells. The supernatant derived from CoCl2-treated BV2 cells significantly decreased the cell viability and disrupted the junctional proteins in both pericytes and endothelial cells, resulting in severe leakage. Melatonin suppressed the microglial overactivation, i.e., decreasing the cell number and promoting its anti-inflammatory properties in diabetic rat retinas. Moreover, the leakage of iBRB was alleviated and the pericyte coverage was restored after melatonin treatment. In vitro, when treated with melatonin in CoCl2-treated BV2 cells, the inflammatory factors were decreased, while the anti-inflammatory factors were increased, further reducing the pericyte loss and increasing the tight junctions. Melatonin deactivated microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways, thus maintaining the integrity of iBRB. The present data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of melatonin in the treatment of DR by regulating microglia.


Diabetes Mellitus , Diabetic Retinopathy , Melatonin , Animals , Blood-Retinal Barrier/metabolism , Diabetes Mellitus/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/etiology , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Microglia/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , STAT3 Transcription Factor/metabolism , Signal Transduction
18.
Redox Biol ; 52: 102292, 2022 06.
Article En | MEDLINE | ID: mdl-35325805

Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-ß (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy-lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR.


Chaperone-Mediated Autophagy , Diabetes Mellitus , Diabetic Retinopathy , Ferroptosis , Autophagy , Diabetes Mellitus/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Glia Maturation Factor/metabolism , Glia Maturation Factor/pharmacology , Humans , Lysosomes/metabolism
19.
Exp Eye Res ; 219: 108939, 2022 06.
Article En | MEDLINE | ID: mdl-35150734

Corneal endothelial cells (CECs) play a major role in the maintenance of stromal hydration via the barrier and pump function for clear vision. Adult CECs cannot regenerate after injury. CECs cultured in vitro can undergo mitosis but may undergo corneal endothelial-to-mesenchymal transition (EnMT) and lose their endothelial characteristics. In this study, we examined the effects of CHIR99021 on transforming growth factor beta-1(TGFß1)-induced EnMT in human CECs (hCECs) lines. CHIR99021 kept hCECs in the hexagonal shape and could downregulate the EnMT markers alpha-smooth muscle actin (α-SMA) and fibronectin (FN1), meanwhile maintained the hCECs function markers Na+/K+-ATPase and zonula occludens-1 (ZO-1) at levels comparable to those in the normal control. Interestingly, we found that the combination of CHIR99021 and TGFß1 at appropriate concentrations would significantly promote the proliferation and migration of hCECs. These effects may be related to the inhibition of RhoA or Rac1, as well as the activation of Wnt and Erk pathway, with a calcium homeostasis. Our findings indicate that CHIR99021 inhibit EnMT and that the combination of CHIR99021 and TGFß1 may provide new ideas for corneal endothelial regeneration and wound healing.


Endothelial Cells , Endothelium, Corneal , Transforming Growth Factor beta1/pharmacology , Adult , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Corneal/metabolism , Epithelial-Mesenchymal Transition , Humans , Pyridines , Pyrimidines
20.
J Cell Mol Med ; 26(4): 1229-1244, 2022 02.
Article En | MEDLINE | ID: mdl-35023309

The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin-induced diabetic rats, glyoxal-treated R28 cells and hypoxia-treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba-1, TSPO, NF-κB, Nrf2 and inflammation-related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal-treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia-treated microglia, which was largely dampened by FKN. The NF-κB and Nrf2 expressions and intracellular ROS were up-regulated in hypoxia-treated microglia compared with that in normoxia control, and FKN significantly inhibited NF-κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF-κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation-related cytokines and ROS, and protect the retina from diabetes insult.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Microglia , Neuroinflammatory Diseases , Rats
...